Получение из спирта кислоты

 

1. Из алканов. Метан может быть селективно окислен на гетерогенном катализаторе – серебре расчётным количеством кислорода до метанола:

Получение из спирта кислоты

 

Алканы с большим числом атомов углерода ,такие, например, как пропан и бутан, окисляются до смеси первичных и вторичных спиртов расчётным количеством кислорода в присутствии катализаторов – солей марганца. Реакция малоселективна – получается довольно большое количество примесей: альдегидов и кетонов с тем же числом атомов углерода, альдегидов и спиртов – продуктов деструкции

Получение из спирта кислоты

 

 

2. Из алкенов. К любому алкену можно присоединить воду в присутствии кислот

Получение из спирта кислоты

Присоединение идёт по правилу Марковникова.

3. Из алкинов. Ацетилен и терминальные алкины, реагируя с формальдегидом, другими альдегидами и кетонами, дают соответственно первичные, вторичные и третичные спирты


Получение из спирта кислоты

Получение из спирта кислоты

 

 

Получение из спирта кислоты

 

 

Реакции были впервые опубликованы в 1905 году А.Е. Фаворским и носят его имя.

 

 

4. Из алкадиенов. Алкадиены аналогично алкенам присоединяют в присутствии кислот воду.

 

Присоединение первого моля воды идёт преимущественно в положения 1 – 4. При

 

присоединении второго моля воды образуются диолы. Ниже представлены примеры обоих

 

случаев:

 

Получение из спирта кислоты

Получение из спирта кислоты

5. Из галоидных алкилов. Галоидные алкилы вступают с водными растворами щелочей в реакцию нуклеофильного замещения галогена на гидроксил:

Получение из спирта кислоты

 

 

Получение из спирта кислоты

 


Получение из спирта кислоты 6. Из дигалоидных производных. При действии щелочей на дигалоидные производные алканов получаются двухатомные спирты (или диолы):

 

 

Как показано выше из 1,2-дибромэтана получается 1,2-этандиол (этиленгликоль). Этот диол очень широко применяется для производства антифризов. Например, в незамерзающей жидкости для охлаждения двигателей внутреннего сгорания – «Тосол-А 40» его 40%.

Получение из спирта кислоты 7. Из тригалоидных производных. Из 1,2,3-трихлорпропана, например, получают широко используемый глицерин (1,2,3-пропантриол).

 

 

Получение из спирта кислоты 8. Из аминов. При нагревании с парами воды в присутствии катализатора протекает обратимая реакция, в которой конечными продуктами являются спирт с тем же строением углеродного скелета и аммиак.

 

 

Первичные амины можно перевести в спирты так же действием нитрита натрия в соляной кислоте при охлаждении до 2 – 5оС:

Получение из спирта кислоты

Получение из спирта кислоты 9. Из альдегидов и кетонов по реакции Меервейна – Понндорфа – Верлея. На кетон или альдегид действуют каким-либо спиртом в присутствии катализатора – алкоголята алюминия. В качестве алкоксильных групп берут остатки того же спирта, который взят в качестве реагента. Например, в приведённой ниже реакции вместе с нормальным бутиловым спиртом взят трибутилат алюминия. Реакция обратима и равновесие в ней сдвигают по принципу Ле-Шателье избытком спирта-реагента.


 

Первые публикации об этой реакции появились практически одновременно в двух разных немецких и одном французском химических журналах в 1925 – 1926 годах. Реакция имеет огромное значение, так как позволяет восстановить карбонильную группу в спиртовую, не восстанавливая двойные связи, нитро- и нитрозогруппы, которые водородом и другими восстановителями переводятся соответственно в простые связи и аминогруппы, например:

Получение из спирта кислоты

Как видно двойная связь, присутствовавшая в кетоне, сохранилась и в полученном спирте. Ниже показано, что при гидрировании кетогруппы одновременно гидрируется и двойная связь.

Получение из спирта кислоты

Аналогичная картина наблюдается и при наличии в кетоне нитрогруппы: в реакции Меервейна –Понндорфа-Верлея она сохраняется, а при гидрировании водородом на катализаторе восстанавливается до аминогруппы:

Получение из спирта кислоты


Получение из спирта кислоты

 

10. Из альдегидов и кетонов путём гидрированияна катализаторах – металлах платиновой группы: Ni, Pd, Pt :

Получение из спирта кислоты

 

 

Получение из спирта кислоты

11. Получение спиртов из альдегидов и кетонов путём синтезов Гриньяра.

Реакции, открытые Франсуа Огюстом Виктором Гриньяром в 1900 – 1920 годах имеют колоссальное значение для синтезов многих классов органических веществ. Так, например, с их помощью можно из любого галоидного алкила и формальдегида в три стадии получить первичный спирт:

Получение из спирта кислоты (1)

Получение из спирта кислоты

Получение из спирта кислоты

Для получения вторичного спирта надо вместо формальдегида взять любой другой альдегид:

Получение из спирта кислоты

Получение из спирта кислоты

При гидролизе такой соли получается спирт с числом атомов углерода равным сумме их в магнийорганическом соединении и в альдегиде:

Получение из спирта кислоты

Для получения третичного спирта вместо альдегида в синтезе используют кетон:


Получение из спирта кислоты

Получение из спирта кислоты

Получение из спирта кислоты

 

 

12. Из карбоновых кислот спирты можно получить только в две стадии: на первой из карбоновой кислоты действием пентахлорида фосфора или действием оксиддихлорида серы (IV) получают её хлорангидрид:

Получение из спирта кислоты

Получение из спирта кислоты

На второй стадии, полученный хлорангидрид гидрируют на палладии до спирта:

Получение из спирта кислоты

 

13. Из алкоголятов спирты очень легко получаются путём гидролиза при комнатной температуре:

Получение из спирта кислоты

Получение из спирта кислоты

Борные эфиры гидролизуются труднее – только при нагревании:

Получение из спирта кислоты

 

 

 

Выпадает в осадок если её больше, чем 4г/100г H2O

 

14. Из сложных эфиров спирты наряду с карбоновыми кислотами могут быть получены путём автокаталитического, кислотного или щелочного гидролиза.
и автокаталитическом процессе в результате очень медленного гидролиза водой появляется слабая карбоновая кислота, которая в дальнейшем ходе реакции играет роль катализатора, заметно ускоряя расход сложного эфира и появление спирта во времени. Например, для реакции втор-бутилового эфира 2-метилпропановой кислоты кинетические кривые, то есть зависимости изменения молярных концентраций во времени представяют собой сигмоиды или S-образные кривые (смотрите график ниже реакции).

Получение из спирта кислоты

Получение из спирта кислоты

 

15. Если добавить к сложному эфиру сильную кислоту, которая является катализатором, то в

реакции не будет индукционного периода, когда гидролиз почти не идёт (от 0 до 1 времени).

Кинетические кривые в этом случае будут представлять собой экспоненты: нисходящую

для сложного эфира и восходящую для спирта. Процесс называется кислотным гидролизом:

Получение из спирта кислоты

16. Если добавить к сложному эфиру щёлочь (моль на моль или избыток) , то реакция так же описывается экспоненциальными кинетическими кривыми, но в отличие от кислотного гидролиза, где концентрации веществ стремятся к равновесным значениям, здесь конечная концентрация спирта практически равна исходной концентрации эфира. Ниже приведена реакция щелочного гидролиза того же сложного эфира и график с кинетическими кривыми. Как видно щёлочь здесь не катализатор, а реагент, и реакция необратима:


Получение из спирта кислоты

Получение из спирта кислоты

17. Из сложных эфиров спирты можно получить также по Буво и Блану. Этот способ был впервые опубликован авторами в двух разных французских химических журналах в 1903 и 1906 годах и заключается в восстановлении сложных эфиров натрием в спирте, например:

Получение из спирта кислоты

Как видно в реакции получаются два спирта: один из кислотной части сложного эфира и он всегда первичный, второй из спиртовой части и он может быть любым – первичным, вторичным или третичным.

18. Более современный способ получения спиртов из сложных эфиров заключается в восстановлении их комплексными гидридами до алкоголятов (реакция ( 1 ) ), которые затем легко переводятся в спирты путём гидролиза (реакции ( 2а ) и ( 2b ) ), например:

Получение из спирта кислоты

 

Получение из спирта кислоты

 

Получение из спирта кислоты

 

megaobuchalka.ru

Номенклатура спиртов


Спирты представляет собой органические соединения гидроксильной (ОН) функциональной группы с алифатическим атомом углерода. Поскольку ОН является принадлежностью молекул всех спиртов, их часто представляют как производными воды с общей формулой ROH, где R обозначает алкильную группу.

Получение спиртов метанола (СН3ОН) и этанола (СН3СН2ОН), являющихся первыми двумя членами их гомологического ряда, является важной задачей химической промышленности многих стран. При содержании от одного до четырех атомов углерода их часто называют общими именами, в которых за названием алкильной группы следует слово спирт:Получение из спирта кислоты«>

Можно видеть, что все четыре (две последние являются изомерами одного вещества) представленные выше молекулы спиртов содержат одну гидроксильную группу. По этому признаку все они относятся к классу одноатомных спиртов (бывают и двух-, трех, четырех- и многоатомные). Кроме того, все они являются производными предельных углеводородов из ряда алканов: метана, этана, пропана (названия спиртов получают добавлением к названию алкена окончания «-ол»). Поэтому их еще называют предельными одноатомными спиртами.

Одноатомные спирты

Получение, свойства (как физические, так и химические) этих соединений зависят от количества атомов углерода, присоединенных к его же атому, непосредственно связанному с группой ОН. Поэтому одноатомные спирты могут быть сгруппированы в три класса на этой основе.

  • Первичные спирты имеют молекулу, в которой один атом углерода, связанный с ОН-группой, присоединен к еще одному атому C. Их общая формула RCH2ОН. Например, этанол – первичный спирт.Получение из спирта кислоты«>

  • Вторичные спирты имеют в молекуле один атом углерода с ОН-группой, присоединенный к двум другими атомам C. Их общая формула R2СНОН. К ним относятся пропиловый и изопропиловый спирты.Получение из спирта кислоты«>
  • Третичные спирты содержат в молекуле атом углерода с ОН-группой, присоединенный к трем другими атомам C. Их общая формула R3СОН.Получение из спирта кислоты«>

Получение одноатомных спиртов в промышленности возможно целым рядом способов, которые будут рассмотрены ниже.

Метанол как продукт природного газа

Метанол получают смешиванием газа водорода и монооксида углерода при высоких температурах и давлениях (200 ат, 350 °C) в присутствии катализатора, состоящего из оксида цинка (ZnO) и оксида хрома (Cr2 O3) в качестве катализатора: 2H2 + CO → CH3OH.
Получение из спирта кислоты«>

При этом сырьем для получения реагентов являются природный газ и водяной пар, смешивая которые, получают синтез – газ, представляющий собой смесь CO и H2.

Метанол является важным растворителем и используется в качестве автомобильного топлива, либо в виде чистой жидкости – в некоторых гоночных автомобилях, либо в качестве высокооктановой добавки в бензин. Получение и применение спиртов в мире, и в частности метанола, измеряется миллионами тонн. По итогам 2013 г. в мире было потреблено 66 млн т метанола, из них 65 % в Азии, 17 % — в Европе и 11 % — в США.

Получение предельных спиртов из алкенов

Многие простые весовые спирты, имеющие промышленное значение, производятся гидратацией (добавлением воды) алкенов (этилена, пропилена, бутена). Этанол, изопропанол, бутанол (вторичный и третичный) получают по этой реакции.

Известны прямой и косвенный способы получения спиртов гидратацией. Прямой позволяет избежать образования стабильных промежуточных продуктов, как правило, с помощью кислых катализаторов.

Получение из спирта кислоты«>

Катализатором обычно является фосфорная кислота, адсорбированная на пористом носителе, таком как силикагель или кизельгур. Этот катализатор был впервые использован для крупномасштабного производства этанола в США компанией «Шелл» в 1947 году. Реакцию проводят в присутствии пара высокого давления при 300 °C, причем между этиленом и паром поддерживается соотношение 1,0: 0,6.

Аналогичная реакция производства изопропилового спирта с катализаторов в виде серной кислоты выглядит следующим образомПолучение из спирта кислоты«>

Косвенный способ гидратации этилена

В косвенным способе, на практике впервые примененном в промышленном масштабе в 1930 году, но сегодня считающимся почти полностью устаревшим, реакция получения спиртов заключается в превращении алкена в сульфат эфиры, который затем гидролизуют. Традиционно алкен обрабатывают серной кислотой с получением алкильные сульфатных эфиров. В случае производства этанола, этот шаг может быть записан так: Н2SO4 + С2 Н4 → C2H5 -O-SO3H

Впоследствии этот сульфат эфира гидролизуют до регенерации серной кислоты и освобождения этанола: С2Н5-O-SO3H + H2O → H2SO4 + С2Н5ОН.

Способы получения спиртов чрезвычайно разнообразны, но нижеописанный процесс, пожалуй, известен, хотя бы понаслышке каждому читателю.

Спиртовое брожение

Это биологический процесс, в котором молекулы, такие как глюкоза, фруктоза и сахароза, преобразуются в клеточную энергию с параллельным производством этанола и углекислого газа в качестве продуктов метаболизма. Брожение катализируется ферментами, содержащимися в дрожжах и протекает по сложному многоступенчатому механизму, которое включает в общем случае преобразование (на первом этапе) крахмала, содержащегося в растительных зернах, в глюкозу с последующим получением из нее этанола. Поскольку дрожжи выполняют это преобразование в отсутствие кислорода, спиртовое брожение считается анаэробным процессом.

Реакции получения спиртов брожением можно представить следующим образом:Получение из спирта кислоты«>

Способы получения алкогольных напитков

Весь этанол, содержащийся в алкогольных напитках производится посредством ферментации, вызванной дрожжами.

Вино производится путем ферментации из натуральных сахаров, присутствующих в винограде; сидр получают аналогичной ферментацией природного сахара в яблоках и грушах, соответственно; и другие фруктовые вина производятся ферментацией сахаров в любых других видах фруктов. Бренди и коньячные спирты (например, сливовица) производятся при перегонке напитков, получаемых брожением фруктовых сахаров.

Медовые напитки производятся путем ферментации из натуральных сахаров, присутствующих в меде.Получение из спирта кислоты«>

Пиво, виски, и водка производятся путем ферментации зерен крахмала, которые преобразуются в сахар под действием фермента амилазы, присутствующей в зерновых ядрах, подвергшихся солодовому проращиванию. Другие источники крахмала (например, картофель и не солодовое зерно) могут быть добавлены к смеси, так как амилаза будет действовать также и на их крахмал.

Рисовые вина (в том числе саке) получают путем брожения зерновых крахмалов, превращаемых в сахар грибками Aspergillus огугае.

Ром и некоторые другие напитки получают ферментацией и дистилляцией сахарного тростника. Ром, как правило, производится из продукта сахарного тростника – патоки.

Во всех случаях брожение должно происходить в сосуде, который позволяет двуокиси углерода выходить, но предотвращает приход наружного воздуха. Это нужно потому, что воздействие кислорода предотвращает образование этанола, а накопление диоксида углерода создает риск разрыва сосуда .Получение из спирта кислоты«>

Реакция нуклеофильного замещения

Получение спиртов в лабораториях производится способами, которые используют в качестве исходных продуктов для реакций химические вещества самых разнообразных классов, от углеводородов до карбонильных соединений. Существует несколько способов, которые сводятся к нескольким основным реакциям.

Первичные галогеналканы реагируют с водными растворами щелочей NaOH или КОН, образуя, образуя, главным образом, первичные спирты в реакции нуклеофильного алифатического замещения. Когда, например, метилбромид реагирует с раствором едкого натра, то гидроксильные группы, образующинся при диссоциации щелочи, замещают ионы брома с образованием метанола.Получение из спирта кислоты«>

Несколько реакций, позволяющих выполнять получение спиртов в лабораториях, приведены ниже.

Нуклеофильное присоединение.

Реактивы Гриньяра (соединения магния с алкилгалогенидами – иодидами или бромидами), а также металлоорганические соединения меди и лития реагируют с карбонильными группами (C=O) альдегидов с образованием первичных и вторичных спиртов в зависимости от механизма присоединения.Аналогичные реакции с кетонами приводят к третичным спиртам.Получение из спирта кислоты«>

Реакция Барбье протекает между галогеналканом и карбонильной группой в качестве электрофильного субстрата в присутствии магния, алюминия, цинка, индия, олова или его солей. Продуктом реакции является первичный, вторичный или третичный спирт. Механизм ее протекания аналогичен реакции Гриньяра с той разницей, что реакция Барбье является синтезом в одном сосуде, тогда как реактив Гриньяра получают отдельно перед добавлением карбонильного соединения. Получение из спирта кислоты«>Являясь реакцией нуклеофильного присоединения, она происходит с относительно недорогими и водостойкими металлами или их соединениями в отличие от реагентов Гриньяра или органолитиевых реагентов. По этой причине возможно во многих случаях запускать ее в воде, что делает процесс частью зеленой химии. Реакция Барбье назван в честь Филиппа Барбье – учителя Виктора Гриньяра.

Реакция восстановления

Альдегиды или кетоны восстанавливаются до спиртов с боргидридом натрия (NaBH4) или (после кислотной обработки) с литийалюминий гидридом (LiAlH).

В реакции Меервейна-Пондорфа-Верли (MPV) получение спиртов путем восстановления их из кетонов и альдегидов происходит с использованием алюминиевого алкоксидного катализатора. Достоинства MPV заключаются в ее высокой хемоселективности и использовании дешевого, экологически чистого металлического катализатора. Реакция была обнаружена Меервейном и Шмидтом, и независимо Верли в 1925 г. Они обнаружили, что смесь алюминиевого этоксида и этанола может восстановить альдегиды до их спиртов. Понндорф применил реакцию к кетонам и обновил катализатор до изопропилата алюминия (Al(O-i-Pr)3, где i-Pr означает изопропиловую группу (CH(CH3)2). в целях получения изопропанола.

Общее уравнение получения спирта путем MPV-восстановления кетонов до спиртов выглядит так:

Получение из спирта кислоты«>

Это, конечно, не все, что можно сказать относительно спиртов и их свойств, но общее представление о них, надеемся, вам составить удалось.

www.syl.ru

Процесс окисления этилового спирта с образованием уксусной кислоты осуществляется уксуснокислыми бактериями и используется для промышленного получения уксуса. Процесс идет в строго аэробных условиях по уравнению:

Рисунок

Рисунок

Выход энергии в этой реакции незначителен. По-видимому, процесс носит приспособительный характер, защищая уксуснокислые бактерии от других видов бактерий, не способных переносить высокую кислотность среды.

Для промышленного получения уксуса используется вид Acetobacter aceti, который представляет собой мелкую бесспоровую грамотрицательную палочку. Бактерия способна выдерживать концентрацию спирта в среде до 11 %, накапливает 9—11 % уксусной кислоты (иногда до 60 %). Уксуснокислые бактерии могут окислять и другие спирты, в соответствующие кислоты. Промышленное значение имеет окисление сорбита в сорбозу, из которой в дальнейшем получают аскорбиновую кислоту (витамин С).

Отрицательная роль уксуснокислых бактерий заключается в порче ими вин. Этот процесс в прошлом веке принял характер национальной катастрофы для Франции. Превращение одного из основных продуктов экспорта—вина—в уксус грозило подорвать экономику страны. Л. Пастер, изучив процесс порчи вина, установил его причину и предложил для улучшения сохранения вина прогревать его. Впоследствии этот способ консервирования был назван пастеризацией.

Окисление жиров

Способностью к расщеплению жиров обладают многие микроорганизмы. Под влиянием фермента липазы происходит гидролиз жиров на глицерин и жирные кислоты:

Рисунок

Рисунок

В дальнейшем глицерин окисляется до пировиноградной кислоты и далее в цикле трикарбоновых кислот—до углекислого газа и воды. Жирные кислоты плохо растворяются в воде, с трудом поддаются окислению и потому расщепляются сравнительно мед. ленно. Механизм окисления заключается в образовании с помощью кофермента А ацетилпроизводных и в последовательном отщеплении дикарбоновых осколков в форме ацетилкофермента А (гл. VIII). Промежуточные продукты окисления обычно в среде не накапливаются.

Среди бактерий активный минерализатор жиров—Pseudomonas fluorescens. Как и все представители этого рода, Ps. fluorescens—мелкая подвижная неспороносная палочка, по Граму не окрашивается, образует зеленоватый пигмент. Она постоянно присутствует в активных илах и биопленке. Способность к расщеплению жиров отмечена также у Ps. pyacyanea, Bacillus fluorescens, Ps. liquefaciens, Achromobacter lipolyticum, микобактерий и многих других бактерий и грибов.

scibook.net

1. Способы получения спиртов

Основные способы получения спиртов уже рассматривались при обсуждении реакционной способности галогенопроизводных, элементоорганических соединений и алкенов. Особенно следует выделить получение метанола и этанола.

1.1 Гидрогенизация окиси углерода

Метиловый спирт, он же метанол, он же древесный спирт, обнаруженный впервые в середине ХVII века, выделенный в чистом виде в 1834 г., синтезированный в 1857 г., — один из старейших продуктов химической индустрии. Поначалу его получали сухой перегонкой древесины, а в 1923 г. начала работать первая заводская установка, на которой метанол синтезировали из водорода и окиси углерода. По объему производства метанол стоит на первом месте среди вторичных нефтехимических продуктов.

Получение из спирта кислоты (1)

Метанол токсичен: его употребление, вдыхание паров или нахождение на коже в течение длительного времени вызывает слепоту или приводит к смертельному исходу.

1.2 Ферментация

Еще в древности было обнаружено, что при брожении многих растительных продуктов образуются алкогольные напитки, но лишь сравнительно недавно стало известно, что активным началом в них является этиловый спирт.

Получение из спирта кислоты (2)

В дрожжах имеются энзимы, вызывающие превращение сахаров в спирты. Ферментацией кроме этилового спирта можно получать спирты С3 , C4 и С5 .

1.3 Синтез спиртов из алкенов (8.2.2 Гидратация алкенов)

Гидратация алкенов используется в промышленности для получения спиртов из продуктов нефтепереработки. Присоединение протекает по правилу Марковнико-ва. Условия проведения реакции зависят от природы алкена. Скорость гидратации возрвстает с увеличением разветвленности алкена.

Получение из спирта кислоты (8-16)

Получение из спирта кислоты (8-17)

Гидратация пропена в кислой среде

Получение из спирта кислоты (8-18)

прохолит по следующему еханизму:

Получение из спирта кислоты

Получение из спирта кислоты

Получение из спирта кислоты

(8-М 9)

Упр.2. Завершите реакцию и опишите ее механизм:

Ответ.

Получение из спирта кислоты (8-20)

Механизм:

Получение из спирта кислоты

Кислотно-катализируемая гидратация алкенов лежит в основе промышленного способа получения этанола из этилена и 2-пропанола из пропена. Этиловый и изопропиловый спирты для технических целей получают, в основном, гидратацией этилена и пропилена в паровой фазе:

Получение из спирта кислоты (3)

Получение из спирта кислоты (4)

Для получения других спиртов этот метод имеет весьма ограниченную область применения, поскольку гидратация алкенов часто сопровождается изомеризацией углеродного скелета за счет перегруппировок промежуточно образующихся карбокатионов, что сильно снижает синтетические возможности этого, на первый взгляд очень простого, способа получения вторичных и третичных спиртов. В лабораторной практике его по существу вытеснил другой способ, основанный на реакции оксимеркурирования-демеркурирования алкенов. Оксимеркурирование-демеркурирование региоселективно и приводит к присоединению воды по правилу Марковникова. Эта реакция проводится в оченьмягких условиях с выходами, близкими к количественному выходу.

Получение из спирта кислоты (5)

1-пентен 2-пентанол

Преимуществом этого метода превращения алкенов в спирты является то, что при этом не наблюдается перегруппировок:

Получение из спирта кислоты (6)

3,3-диметил-1-бутен 3,3-диметил-2-бутанол

Упр.3. Методом оксимеркурирования-демеркурирования из подходящих алкенов получите (а) 1-циклопентилэтанол, (б) 3-метил-3-пентанол,

(в) 1-этилциклопентанол.

Для того, чтобы присоединить воду к алкенам против правила Марковникова используют метод гидроборирования-окисления.

(8)

пропен 1-пропанол

Получение из спирта кислоты (9)

2-метилпропен 2-метил-1-пропанол

Упр.4. Напишите реакции получения (а) 1-пентанола,

(б) транс-2-метилциклогексанола из соответствующих алкенов.

Упр.5. Какой спирт образуется из 3,3-диметил-1-бутена при (а) гидратации в присутствии кислоты, (б) оксимеркурировании-демеркурировании и (в) гидробори-ровании-окислении?

Упр.6. Завершите реакцию

Получение из спирта кислоты

1.4. Синтез спиртов из галогеноуглеводородов

Синтез спиртов из из галогеноуглеводородов уже обсуждался в гл. 6, (реакции 15,16,18 и 21, м1-4) При нагревании алкилгалогенидов с водными растворами щелочей они превращаются в спирты:

Получение из спирта кислоты (10)

Этот метод используется в промышленности для получения спиртов из доступных галогеноуглеводородов, таких как аллил- и бензилхлориды.

Получение из спирта кислоты (11)

аллилхлорид аллиловый спирт

(12)

бензилхлорид бензиловый спирт

Аналогичным методом могут быть получены диолы

Получение из спирта кислоты (13)

этиленгликоль

Упр.7. Напишите реакции получения (а) аллилового спирта из пропена и (б) бензилового спирта из толуола.

1.5. Синтез спиртов из металлоорганических соединений

Для получения первичных спиртов к реактивам Гриньяра присоединяют формальдегид или окись этилена. В первом случае спирты имеют на один, а во втором на два атома углерода больше, чем в исходном галогенуглеводороде.

Получение из спирта кислоты (14)

формальдегид бензиловый спирт

Получение из спирта кислоты (15)

окись этилена 2-фенилэтанол

Для получения вторичных спиртов используют альдегиды (но не формальдегид).

Получение из спирта кислоты (16)

бензальдегид 1-фенил-1-пропанол

Для получения третичных спиртов используют или кетоны или сложные эфиры. При использовании кетонов можно получать третичные спирты любого строения, а при использовании сложных эфиров — спирты с двумя одинаковыми частями молекул:

Получение из спирта кислоты (17)

2-пентанон 3-метил-3-гексанол

Получение из спирта кислоты (19)

этилбензоат 2-фенил-2-пропанол

Упр.8. Используя реактивы Гриньяра, получите следующие спирты:

Получение из спирта кислотыПолучение из спирта кислоты

Получение из спирта кислоты

1.6. Восстановление альдегидов, кетонов и эфиров карбоновых кислот

Альдегиды и кетоны сравнительно легко гидрируются в присутствии Pt, Pd, Ni и других катализаторов гидрирования:

Получение из спирта кислоты

Эта реакция находит промышленное применение для получения первичных и вторичных спиртов из доступных альдегидов и кетонов:

Получение из спирта кислоты (20)

пропаналь 1-пропанол

Получение из спирта кислоты (21)

Гидрирование сложных эфиров проходит через стадию образования альдегидов:

Получение из спирта кислоты

Этим методом в промышленности из метиловых эфиров высших кислот получают высшие первичные спирты, например:

Получение из спирта кислоты (22)

метилпальмитат цетиловый спирт

В лабораторных условиях для восстановления альдегидов и кетонов используют боргидрид натрия NaBH4 или реже алюмогидрид лития LiAlH4 . Реакции карбонилсодержащих соединений с гидридами металлов напоминают их реакции с металлорганическими соединениями:

Получение из спирта кислоты

Для восстановления в спирты альдегидов и кетонов лучше всего пользоваться боргидридом натрия. Эту реакцию можно проводить в спирте или даже в воде.

Реакция восстановления циклогексанона

Получение из спирта кислоты (23)

проходит по следующему механизму

mirznanii.com

Как получить спирт методом брожения

Винный или этиловый спирт можно получить разными химическими и биохимическими способами. Самым старым и распространенным методом является алкогольное брожение с последующей дегидратацией (удалением воды).

Довольно сложным является получение этилового спирта путем брожения, в котором участвуют дрожжи. Установлено, что брожение провоцируют не сами дрожжи, а выделяемые ими специфические вещества – зимазы. В процессе брожения глюкоза С6Н12Опреобразуется в спирт и углекислоту по следующему уравнению:

  • С6Н12О6 → 2СО2 + 2С2Н5ОН + энергия

где СО2 – углекислый газ, а С2Н5ОН – этиловый спирт.

Спиртовому брожению может подвергаться не только глюкоза, но и другие сахаристые вещества, содержащиеся в природе в качестве растительных компонентов (например, в соке). Из чего получают спирт в этом случае? Из картофеля, свеклы, зерна пшеницы, овса, риса и т. п.

Если при получении спирта используется сырье, богатое крахмалом, то оно сначала должно поддаться осахариванию – превращению крахмала в сахар под действием определенных ферментов. При этом происходит реакция по следующей формуле:

  • 6Н10О5)n + nН2О + ФЕРМЕНТ → nС6Н12О6

где (С6Н10О5)n  — крахмал.

После преобразования крахмала в сахар далее получить этиловый спирт из глюкозы уже гораздо легче. Если при получении спирта используется сахаросодержащее сырье, то процесс сводится к сбраживанию подвернутого обработке сахаристого сока.

Перебродившее сырье перегоняют благодаря процессу ректификации. Для этого спиртсодержащую жидкость нагревают (доводят до кипения). При кипении спирт выпаривается и попадает в ректификационную колонну, а потом в дефлегматор. В дефлегматоре пары соприкасаются с охлажденной поверхностью, конденсируются, стекая в емкость, и образуют жидкий спирт.

Гидратация этилена

Спирт может быть получен из этилена (газа) в присутствии концентрированной сильной кислоты (фосфорной, серной). Процесс проводят в автоклаве. Сернокислотная гидратация происходит по такой схеме:

  • С2Н4 + H2SO4 → С2Н5О2-SO2
  • Н3С-СН2-О- SO2ОН + Н-О-Н → Н3С-СН2-ОН + Н2SO4

Суммарное уравнение такое:

  • Н2С=СН2 + Н2О → Н3С-СН2-ОН (в присутствии серной кислоты H2SO4)

Другие способы получения спиртов

Как получить спирт из алкана (его галоген-производного)? Здесь необходима реакция, которая происходит по типу гидролиза. В результате образуется этиловый спирт и соль – хлорид натрия:

  • С2Н5СІ + NaOH → С2Н5OH + NaСl

Чтобы получить спирт из кетонов или альдегидов, нужно провести реакцию этинилирования этих соединений (другое название – реакция Фаворского). При этом в реакцию вступают кетоны, алкины и альдегиды (чаще это формальдегид) в основной среде (к примеру, в КОН). Реакция происходит по такой схеме:

  • RC≡CH + CH2O → RC≡C-CH2OH
  • HC≡CH + 2CR2O → HOCR2-C≡C-CR2OH

где R – радикал СnН2n+1

Как получить спирт из эфира путем гидролиза? Стоит знать, что сам по себе гидролиз – это химический процесс, при котором под воздействием воды происходит распад (разложение) исходных веществ с образованием новых соединений. Гидролиз эфиров с образованием спиртов происходит согласно следующему уравнению:

  • RO-OR΄+ NaOH → RO-ONa + HO-R΄

где:

  • R – радикал СnН2n+1
  • R΄ – радикал СnНn+2
  • RO-OR΄ — эфир
  • NaOH – гидроксид натрия
  • RO-ONa – карбоксилат натрия
  • HO-R΄ — спирт

Из уксусной кислоты получить спирт можно несколькими способами.

  • Гидрирование кислоты: СН3СООН + 2Н2 → Н2О + С2Н5ОН (процесс происходит в присутствии никеля или платины)
  • Восстановление производных уксусной кислоты (или других карбоновых кислот): СН3СООН + С2Н5ОН → CH3-CO-O-C2H5 + Н2О (в присутствии серной кислоты образуется сложный эфир — этилацетат). CH3-CO-O-C2H5 + Na[C2H5OH] → С2Н5ОН + С2Н5ОNa
  • Непосредственное восстановление уксусной или других кислот до получения спирта возможно при реакции с алюмогидридом лития. Вот окончательное уравнение процесса: 4CH3-COOH + LiAlH4 → 4CH3-CH2-OH + Al(OH)3 + LiOH

Описанными методами (из алканов, кислот, кетонов, альдегидов и прочих исходных веществ) получают технический спирт. Пищевой спирт из различного сырья получают лишь методом брожения.

elhow.ru

18.18. Восстановление кислот в спирты

Превращение спиртов в кислоты (разд. 18.6) — очень важный процесс, поскольку, как правило, спирты более доступны, чем кислоты. Однако это не всегда верно: неразветвленные кислоты с длинной цепью, получаемые из жиров, более доступны, чем соответствующие спирты, и в данном случае становится важным обратный процесс — восстановление кислот в спирты.

Алюмогидрид лития Получение из спирта кислоты один из немногих реагентов, способных восстанавливать кислоты в спирты; первоначально образуется алкоголят, превращающийся в спирт при гидролизе

Получение из спирта кислоты

Восстановление с помощью Получение из спирта кислоты протекает с отличными выходами, и поэтому этот реагент широко используется в лаборатории для восстановления не только кислот, но и многих других классов соединений. Поскольку Получение из спирта кислоты довольно дорог, то в промышленности его используют только для восстановления небольших количеств ценных сырьевых продуктов, например в синтезе некоторых лекарственных препаратов и гормонов.

Альтернативой процессу прямого восстановления часто может служить процесс двухстадийного превращения кислот в спирты: этерификация и восстановление сложного эфира. Существует несколько методов восстановления сложных эфиров (разд. 20.21), применимых как в лаборатории, так и в промышленности.

Мы уже убедились в разд. 18.5, что карбоновые кислоты, содержащие длинные неразветвленные цепи и полученные из жиров, являются доступными полупродуктами в органическом синтезе. Восстановление этих кислот в спирты (непосредственно или через сложные эфиры) — ключевая стадия в использовании этого сырья, поскольку из спиртов (разд. 16.10) может быть получено множество других продуктов. Хотя доступны лишь кислоты с четным числом атомов углерода, безусловно, можно увеличить длину цепи и, таким образом, перейти к соединениям с нечетным числом -атомов углерода (в качестве альтернативного источника спиртов как с четным, так и с нечетным числом атомов углерода см. алфол-процесс, стр. 484).

(см. скан)

info.sernam.ru

12.Превращение безазотистых органических веществ в аэробных условиях.

  1. Получение уксусной кислоты из этилового спирта.

  2. Образование органических кислот плесневыми грибами.

  3. Разрушение целлюлозы и пектиновых веществ.

А) Уксуснокислое брожение

Уксуснокислым брожением назы­вается окисление этилового спирта в уксусную кислоту под влиянием уксуснокислых бактерий.

Оно может быть выражено таким суммарным уравнением:

С2Н5ОН + О2 = СН3СООН + Н2О

Это брожение, как и спиртовое, известно с давних времен. Человек с давних пор наблюдал, что на поверхности вина или пива, оставленных в открытом сосуде, образуется сероватая пленка, а содержимое превращается в уксус. Микробиологиче­ская природа этого процесса была впервые установлена в 1862 г. Пастером.

Возбудителями уксуснокислого брожения являются уксусно­кислые бактерии, составляющие многочисленную группу палоч­ковидных, бесспоровых, аэробных бактерий. Среди них встре­чаются подвижные и неподвижные формы. Различаются они также размерами клеток, разной устойчивостью к спирту и спо­собностью накапливать больше или меньше уксусной кислоты.

Уксуснокислые бактерии выдерживают концентрацию спирта в 10-12% и образуют в среде от 6 до 11,5% уксуса.

Оптимальная температура их развития колеблется в преде­лах 20-35°С. Уксуснокислые бактерии могут соединяться в длин­ные нити или образовывать пленки на поверхности субстрата. Они широко распространены в природе и встречаются на зре­лых ягодах, плодах, в вине, пиве, квасе, квашеных овощах и т. д.

На практике уксуснокислое брожение используется для по­лучения уксуса.

Исходным субстратом для получения уксуса служит вино­градное или плодово-ягодное вино, а чаще всего — раствор, со­держащий спирт и подкисленный уксусом с целью создания благоприятных условий уксуснокислым бактериям. В такой раствор добавляют также необходимые для бактерий минераль­ные соли и другие питательные вещества.

После брожения содержание уксусной кислоты в субстрате может доходить до 9%. Такой уксус разбавляют до содержания 4,5-6% уксусной кислоты, а затем направляют в продажу.

В) Лимоннокислое брожение

При лимоннокислом брожении сахар под воздействием грибов окисляется в лимонную кислоту. Эту кислоту раньше получали из сока цитрусовых – лимонов и апельсинов. В настоящее время ее производят в основном путем брожения. В качестве возбудителя лимоннокислого брожения применяется гриб асспергиллус нигер.

Сырьем для производства лимонной кислоты служит сахаросодержащий продукт — меласса. Мелассный раствор, включаю­щий около 15% сахара и необходимые грибу питательные веще­ства, разливают в плоские открытые сосуды и засевают спорами гриба. Сосуды помещают в бродильные камеры, которые хоро­шо проветривают. Процесс брожения продолжается в течение 6-8 дней при температуре около 30°С.

По окончании брожения мелассный раствор из-под пленки гриба сливают, затем из него выделяют лимонную кислоту, ко­торую подвергают последующей очистке и кристаллизации. Вы­ход лимонной кислоты составляет 50-60% от количества израсходованного сахара.

В последнее время начинают применять новый метод полу­чения лимонной кислоты. При этом гриб находится не на поверхности сбраживаемого субстрата, а внедряется своим мицелием в толщу субстрата, который энергично насыщают воз­духом. Такой способ ускоряет процесс накопления лимонной кислоты в сбраживаемом субстрате.

Лимонная кислота находит широкое практическое примене­ние, она используется, например, при изготовлении кондитер­ских и кулинарных изделий, безалкогольных напитков и т. д.

С) Разложение клетчатки

Клетчатка (целлюлоза) является главной составной частью растительных тканей. Она представляет собой сложный полиса­харид, обладающий большой химической устойчивостью. Одна­ко некоторые бактерии и грибы выделяют ферменты, разрушаю­щие клетчатку. Разложение клетчатки постоянно происходит в природе и может протекать как в анаэробных, так и в аэробных условиях. Брожение целлюлозы заключается в разрушении клет­чатки в анаэробных условиях с образованием масляной и уксусной кислот, углекислого газа, водорода или метана. Сущность брожения клетчатки вскрыта в 1902 г. Омелянским, который выделил две разновидности бактерий, разрушающих клетчатку: одна из них вызывает брожение целлюлозы с образованием преимущественно водорода (водородное брожение), а другая — метана (метановое брожение).

Бактерии Омелянского представляют собой спорообразующие анаэробные палочки, имеющие оптимальную температуру развития около 30°С; они широко распространены в природе.

Брожение клетчатки вызывают также некоторые термофиль­ные бактерии. Они образуют споры и являются факультативны­ми анаэробами, хорошо развивающимися при температуре 60-65°С.

Брожение клетчатки находит использование в технике при получении горючих газов, а также уксусной и муравьиной кислот из опилок, соломы и других растительных материалов, богатых целлюлозой.

Аэробное разрушение клетчатки происходит под действием различных микроорганизмов — грибов и аэробных бактерий. К их числу относятся многие грибы из родов пенициллиум, аспергиллус, ботритис, кладоспориум и других, а также актиномицеты и миксобактерии. Аэробное разрушение клетчатки имеет огромное значение в процессах разложения различных расти­тельных остатков и их минерализации в природе. В результате разложения клетчатки, а также других органических соедине­ний, в почве под влиянием грибов и бактерий образуется гумус — темноокрашеные вещество, характеризующее черноземную почву.

studfiles.net


Leave a Comment

Ваш e-mail не будет опубликован. Обязательные поля помечены *