Получение уксусного альдегида двумя способами

 

Реактивы:

Хромовая смесь (K2Cr2O7 + H2SO4)

Этанол

Фуксинсернистая кислота

Ход работы:

В сухую пробирку наливают 2 мл хромовой смеси, помещают кипятильный камешек и добавляют 2 мл (0,0034 моль) этанола. Пробирку закрывают газоотводной трубкой, свободный конец трубки помещают в другую пробирку с бесцветной фуксинсернистой кислотой. Пробирку со смесью зажимают держателем и осторожно нагревают. Хромовая смесь изменяет свою окраску и из оранжево-красной становится зеленой. Спирт за счет кислорода хромовой смеси окисляется в альдегид, а альдегид вместе с парами воды уходит через газоотводную трубку в пробирку, в которой находится фуксинсернистая кислота, окрашивая её в малиновый цвет.

Эта реакция (с реактивом Моллера) используется в спиртовом производстве для количественного определения альдегидов при контроле качества получаемого этилового спирта.


Окисление спирта происходит по следующей схеме:

 

3CH3-CH2-OH + K2Cr2O7 + 4H2SO4 ® 3CH3-CHO + Cr2(SO4)3 + K2SO4 + 7H2O

 

Опыт № 26. Окисление альдегида. Образование серебряного зеркала

 

Реактивы:

Формальдегид (40% водный раствор)

10% раствор гидроксида натрия

Аммиачный раствор гидроксида серебра (реактив Толленса)

Ход работы:

В чистую пробирку наливают 4 мл 10% раствора гидроксида натрия и осторожно нагревают на пламени горелки до кипения. Затем содержимое выливают, пробирку охлаждают и несколько раз ополаскивают водой. В подготовленную таким образом пробирку наливают 2 мл формалина (раствор, содержащий 40 % формальдегида, 8 % метилового спирта и 52 % воды), 2 мл свежеприготовленного аммиачного раствора оксида серебра, и смесь слегка встряхивают. Затем содержимое очень осторожно нагревают, вращая пробирку так, чтобы жидкость распределялась по стенкам. Через 1 минуту стенки пробирки покрываются блестящим слоем выделившегося металлического серебра, образуется серебряное зеркало. Формальдегид окисляется в муравьиную кислоту, а серебро восстанавливается (окислительно-восстановительная реакция):

 

H-COH + 2[Ag(NH3)2]OH ® H-COOH + 2Ag¯ + 4NH3­ + H2O


 

Опыт № 27. Реакция диспропорционирования формальдегида

(реакция Канницаро)

 

Реактивы:

Формальдегид (40% водный раствор)

10% раствор гидроксида натрия

Индикатор метиловый красный

Ход работы:

В пробирку наливают 1 мл 40% раствора формальдегида, добавляют каплю раствора метилового-красного. Раствор имеет жёлтую окраску (нейтральная среда). При добавлении щёлочи раствор краснеет, что указывает на кислую реакцию. При этом одна молекула альдегида в водных растворах окисляется до кислоты за счет другой молекулы, которая в свою очередь восстанавливается в соответствующий спирт:

2НСНО +Н2О → НСООН + СН3ОН

 

Опыт № 28. Окисление формальдегида гидроксидом меди (II)

В щелочной среде

 

Реактивы:

Формальдегид (40% водный раствор)

20% раствор гидроксида натрия

5% раствор сульфата меди

Ход работы:

В пробирку наливают 2 мл 20% раствора гидроксида натрия (0,01 моль) и 0,5 мл 5% раствор сульфата меди (1,6∙10-4 моль). К полученному осадку гидроксида меди (II) добавляют 1 мл 40% водного раствора формальдегида (0,016 моль). Нагревают только верхнюю часть раствора так, чтобы нижняя осталась для контроля холодной. В нагретой части пробирки выделяется осадок: сначала осадок имеет желтый цвет (образовался гидроксид меди (I) CuOH), затем цвет осадка переходит в красный (оксид меди (I) Cu2O).


 

H-CHO + 2Cu(OH)2 ® H-COOH + 2CuOH¯ + H2O

 

2CuOH ® Cu2O¯ + H2O

 

Поскольку формальдегид является самым активным альдегидом, то он может восстанавливать оксид меди, образуя «медное зеркало» (металлическая медь выделяется в виде коричнево-красного порошка):

 

H-CHO + Cu2O ® H-COOH + 2Cu¯

 

Опыт № 29. Цветные реакции на альдегиды

 

Реактивы:

Формальдегид (10% водный раствор)

0,5% водный раствор резорцина

Раствор фуксинсернистой кислоты

Концентрированная серная кислота

Ход работы:

В пробирку наливают 2 мл 10% формальдегида (7∙10-3 моль) и прибавляют 0,5 мл раствора фуксинсернистой кислоты. Через 1-2 минуты раствор приобретает розово-фиолетовое окрашивание. В другую пробирку наливают 2 мл 0,5% водного раствора резорцина (9,1∙10-5 моль), добавляют 1 мл 10% водного раствора формальдегида (3,5∙10-3 моль). Осторожно по стенкам пробирки по каплям приливают серную кислоту до образования малинового окрашивания.

 

Опыт № 30. Образование альдегидами и кетонами гидросульфитных производных

 


Альдегиды и кетоны, имеющие метильную группу, связанную с кетонной группой, легко вступают в реакцию с гидросульфитом натрия, образуя кристаллические вещества.

 

Реактивы:

Насыщенный раствор гидросульфита натрия

Формальдегид (40% водный раствор)

Ацетон

Ход работы:

В одну пробирку наливают 2 мл 40% раствора формальдегида (0,03 моль), а в другую 2 мл (0,027 моль) ацетона и в обе пробирки приливают по 1 мл насыщенного раствора гидросульфита натрия. В пробирку вносят стеклянную палочку и трут ею о стенки пробирки для инициирования процесса кристаллизации. При этом выпадает кристаллический осадок гидросульфитного соединения:

 

H-CHO + NaHSO3 ® H-CH(OH)-SO3Na¯

 

 
  Получение уксусного альдегида двумя способами

Гидросульфитные соединения легко разлагаются под действием разбавленных растворов кислоты, щелочи или соды с выделением свободного альдегида или кетона, поэтому гидросульфитные соединения используют для выделения и очистки альдегидов и кетонов.

cyberpedia.su

А – генетика;
Б – селекция;
В – агробиология;
Г – ботаника.
2. Наследственность – это свойство организмов:
А – взаимодействовать со средой обитания;
Б – реагировать на изменения окружающей среды;
В – передавать свои признаки и особенности развития потомству;
Г – приобретать новые признаки в процессе индивидуального развития.
3.
я изучения характера наследования нескольких признаков рядом поколений растений и животных проводят скрещивание:
А – моногибридное;
Б – анализирующее;
В – полигибридное;
Г – близкородственное.
4. «Расщепление по каждой паре признаков идет независимо от других пар признаков» – это формулировка:
А – первого закона Менделя;
Б – закона Моргана;
Г – второго закона Менделя;
Д – третьего закона Менделя.
5. Появление в первом гибридном поколении особей с одинаковым генотипом является проявлением:
А – закона расщепления;
Б – закона независимого наследования;
В – правила единообразия;
Г – закона сцепленного наследования.
6. На рис. изображены родительские формы, у которых тюльпанов красный цвет лепестков доминирует над белым. Каким будет генотип потомства по этому признаку, если родительский организм с доминантными признаками гомозиготен?

А – АА;
Б – аа;
В – Ааа;
Г – Аа.
7. По рис. определите генотип потомства (F1) морских свинок, если известно, что родительская особь с черной и короткой шерстью гетерозиготна по обоим признакам:
А – АаВв;
Б – аавв;
В – ааВв;
Г – Аавв.

8. Генотип – это совокупность:
А – внешних признаков организма;
Б – внутренних признаков организма;
В – генов, полученных потомством от родителей;
Г – реакций организма на воздействие среды.
9.
омежуточный характер наследования признаков проявляется в том случае, когда:
А – наблюдается изменение условий среды обитания;
Б – происходят сезонные изменения в природе;
В – гетерозиготные особи внешне не отличаются от гомозиготных;
Г – гетерозиготные особи внешне отличаются от гомозиготных.
10. Гены, расположенные в одной хромосоме:
А – наследуются независимо;
Б – попадают в разные половые клетки в процессе мейоза;
В – наследуются вместе;
Г – дают расщепление в потомстве в соотношении 3:1.
11. Какой буквой обозначен фенотип организма, изображенного на рис.

Б – AaBbCc;
В – AbC;
Г –
12. Скрещивание особей, различающихся по двум парам признаков, называют:
А – полигибридным;
Б – анализирующим;
В – дигибридным;
Г – моногибридным.
13. С генетической точки зрения наследственные заболевания у человека представляют собой:
А – модификационные изменения;
Б – изменение фенотипа, не связанное с изменением генотипа;
В – мутации;
Г – реакцию на изменения среды обитания, не зависящую от генотипа.
14. В основе цитогенетического метода изучения наследственности человека лежит исследование:
А – родословной семьи;
Б – распространение признака в большой популяции людей;
В – хромосомного набора, отдельных хромосом;
Г – развития признаков у близнецов.
15.
менение последовательности расположения нуклеотидов в молекуле ДНК называют:
А – генными мутациями;
Б – хромосомными мутациями;
В – соматическими мутациями;
Г – комбинативной изменчивостью.
16. Границы, в пределах которых возможны модификации того или иного признака, называют:
А – приспособленностью;
Б – нормой реакции;
В – изменчивостью;
Г – раздражимостью.
17. Под воздействием генотипа и условий среды обитания формируется:
А – норма реакции;
Б – наследственность;
В – фенотип;
Г – приспособленность.
18. Выделение из исходного материала целой группы особей с необходимыми для селекционера признаками называют:
А – естественным отбором;
Б – массовым отбором;
В – индивидуальной формой искусственного отбора;
Г – стихийным отбором.

belaruskaa-mova.neznaka.ru

Физические свойства уксусного альдегида

1. Уксусный альдегид – это жидкость без цвета, имеющая резкий неприятный запах.

2. Хорошо растворяется в эфире, спирте и воде.

3. Молярная масса составляет 44,05 грамм/моль.

4. Плотность равна 0,7 грамм/сантиметр³.

Термические свойства уксусного альдегида


1. Температура плавления равна -123 градусам.

2. Температура кипения составляет 20 градусов.

3. Температура воспламенения равна -39 градусам.

4. Температура самовоспламенения составляет 185 градусов.

Получение уксусного альдегида

1. Основной способ получения этого вещества заключается в окислении этилена (так называемый процесс Вакера). Так выглядит эта реакция:

2CH2 = C2H4 (этилен) + O2 (кислород) = 2CH3CHO (метилформальдегид)

2. Также уксусный альдегид можно получить посредством гидратации ацетилена в присутствии ртутных солей (так называемая реакция Кучерова). При этом получается фенол, который затем изомеризуется в альдегид.

3. Следующий метод был популярным до появления вышеописанного процесса. Выполнялся путем окисления или дегидрирования этилового спирта на серебряном или медном катализаторе.

Применение уксусного альдегида

— Для получения каких веществ нужен уксусный альдегид? Уксусная кислота, бутадиен, альдегидные полимеры и некоторые другие органические вещества.


— Используется в качестве прекурсора (вещество, которое участвует в реакции, приводящей к созданию целевого вещества) к уксусной кислоте. Однако так применять рассматриваемое нами вещество вскоре перестали. Это произошло по той причине, что уксусную кислоту проще и дешевле производить из металона при помощи процессов Катива и Монсанто.

— Метилформальдегид – важный прекурсор к пентаэритролу, пиридиновым производным и кротоналдегиду.

— Получение смол в результате того, что мочевина и уксусный альдегид имеют способность конденсироваться.

— Получение этилидендиацетата, из которого в дальнейшем производят мономер поливинилацетат (винилацетат).

Табачная зависимость и уксусный альдегид

Данное вещество – это значительная часть табачного дыма. Недавно была проведена демонстрация, на которой было показано, что синергическая связь уксусной кислоты с никотином увеличивает проявление зависимости (особенно у лиц до тридцати лет).

Болезнь Альцгеймера и уксусный альдегид

Те люди, у которых нет генетического фактора конверсии метилформальдегида в уксусную кислоту, имеют высокий риск предрасположенности к такому заболеванию, как сенильная деменция (или болезнь Альцгеймера), которая обычно возникает в старческом возрасте.

Алкоголь и метилформальдегид


Предположительно рассматриваемое нами вещество является канцерогеном для человека, так как на сегодняшний день существуют доказательства канцерогенности уксусного альдегида в различных экспериментах на животных. Кроме этого, метилформальдегид повреждает ДНК, вызывая тем самым несоразмерное с массой тела развитие мышечной системы, которое связано с нарушением обмена белка в организме. Было проведено исследование 800 алкоголиков, в результате которого ученые пришли к выводу, что у людей, подвергшихся воздействию уксусного альдегида, есть дефект в гене одного фермента – алкогольдегидрогеназы. По этой причине такие пациенты больше подвержены риску развития онкологического заболевания почек и верхней части печени.

www.vigivanie.com

Введениеформула уксусного альдегида

На сегодняшний день известны миллионы химических соединений. И большинство из них относится к органическим. Эти вещества делят на несколько больших групп, название одной из них — альдегиды. Сегодня мы рассмотрим представителя этого класса — уксусный альдегид.

Определение

Уксусный альдегид является органическим соединением класса альдегидов. Его могут называть и по-другому: ацетальдегидом, этаналем или метилформальдегидом. Формула уксусного альдегида — CH3-CHO.

Свойства

уксусный альдегид уксусная кислотаРассматриваемое вещество имеет вид бесцветной жидкости с резким удушливым запахом, которая хорошо растворима водой, эфиром и спиртом. Так как температура кипения обсуждаемого соединения низкая (около 20 оС), хранить и перевозить можно только его тример — паральдегид. Уксусный альдегид получают, нагрев упомянутое вещество с неорганической кислотой. Это — типичный алифатичетский аьдегид, и он может принимать участие во всех реакциях, которые характерны для данной группы соединений. Вещество имеет свойство таутомеризироваться. Этот процесс завершается образованием енола — винилового спирта. Из-за того что уксусный альдегид доступен как безводный мономер, его применяют в качестве электрофила. Вступать в реакции может как он, так и его соли. Последние, например при взаимодействии с реактивом Гриньяра и литий-органическими соединеними, образуют производные гидроксэтила. Уксусный альдегид при конденсации отличается своей хиральностью. Так, при реакции Штрекера он может конденсироваться с аммиаком и цианидами, а продуктом гидролиза станет аминокислота аланин. Еще уксусный альдегид вступает в такого же вида реакцию с другими соединениями — аминами, тогда продуктом взаимодействия становятся имины. В синтезе гетероциклических соединений уксусный альдегид является очень важным компонентом, основой всех проводящихся опытов. Паральдегид — циклический тример этого вещества — получается при конденсации трех молекул этаналя. Также уксусный альдегид может образовывать стабильные ацетали. Это происходит во время взаимодействия рассматриваемого химического вещества с этиловым спиртом, проходящего в безводных условиях. уксусный альдегид

Получение

В основном уксусный альдегид получают с помощью окисления этилена (процесс Вакера). В роли окислителя выступает хлорид палладия. Еще данное вещество можно получить во время гидратации ацетилена, в которой присутствуют соли ртути. Продуктом реакции является енол, который изомеризуется в искомое вещество. Еще один способ получения уксусного альдегида, который был наиболее популярным задолго до того, как стал известен процесс Вакера, — окисление или дегидратация этанола в присутствии медного или серебряного катализаторов. При дегидратации, помимо искомого вещества, образуется водород, а во время окисления — вода.

Применение

С помощью обсуждаемого соединения получают бутадиен, альдегидные полимеры и некоторые органические вещества, в том числе и одноименную кислоту. Она образуется при его окислении. Реакция выглядит так: «кислород + уксусный альдегид = уксусная кислота». Этаналь — важный прекурсор ко многим производным, и это свойство широко применяется в синтезе
многих веществ. В организмах человека, животных и растений ацетальдегид является участником некоторых сложных реакций. Также он входит в состав сигаретного дыма.

Заключение

Ацетальдегид может приносить как пользу, так и вред. Он плохо воздействует на кожу, является ирритантом и, возможно, канцерогеном. Поэтому его присутствие в организме нежелательно. Но некоторые люди сами провоцируют появление ацетальдегида, куря сигареты и употребляя алкоголь. Подумайте над этим!

www.syl.ru

Исторически первым промышленном методом получения ацетальдегида была гидратация ацетилена по Кучерову.

Получение уксусного альдегида двумя способами

Этот метод доминировал в производстве уксусного альдегида до 1960 года, в последующие десять лет с ним конкурировал другой способ, основанный на дегидрировании зтанола над медным или серебряным катализатором. После 1975 года оба они были вытеснены исключитель­но простым и дешевым способом, получившим название Вакер-процесса по названию фирмы ФРГ, где он был разработан.

В Вакер-процессе этилен окисляют в водном растворе хлористоводородной кислоты, содержащем хлориды палладия(II) и меди(II). Протекающие при этом реакции описываются следующими уравнениями:

Получение уксусного альдегида двумя способами

Получение уксусного альдегида двумя способами

Получение уксусного альдегида двумя способами

или суммарно:

Получение уксусного альдегида двумя способами

Существуют две разновидности Вакер-процесса, которые нашли практическое применение. В одностадийном процессе смесь этилена и кислорода пропускают через раствор, содержащий НСl, PdCl2 и CuCl2 при 125оС и давлении 3 атм. Образующийся при этом уксусный альдегид вместе с непрореагировавшим этиленом пропускают через сепаратор с водой, которая поглощает ацетальдегид, а этилен повтор­но рециркулируют. В двухстадийном варианте Вакер-процесса водный раствор хлоридов палладия и меди циркулирует в двух реакторах. Этилен под давлением в 10 атмосфер пропускают в первый реактор, где он окисляется до уксусного альдегида. Восстановленная форма катализатора (смесь РdCl2 и Сu2Cl2) поступает во второй реактор, где реактивируется при окисле­нии кислородом воздуха. Уксусный альдегид в сепараторе погло­щают водой и выделяют перегонкой при пониженном давлении. Выход уксусного альдегида в обоих вариантах составляет 95%. Экономически одностадийный Вакер-процесс не имееет преиму­ществ по сравнению с двухстадийным, так как в первом слу­чае требуется чистый кислород, а во втором варианте его за­меняет воздух. На производство уксусного альдегида расходу­ется не более 1-2% производимого этилена.

Уксусный альдегид используется главным образом для ката­литического окисления в уксусную кислоту.

Получение уксусного альдегида двумя способами

Окислителем служит воздух, а катализатором соли кобальта (II), обычно в смеси с солями меди (II). Другой более современный метод получения уксусной кислоты карбонилированием метанола будет рас­смотрен в разделе 28.8.4 этой главы. Некоторое количество уксусного альдегида до сих пор расходуется для синтеза бутанола-1 по схеме:

Получение уксусного альдегида двумя способами

В настоящее время бутанол-1 получается главным образом гидроформилированием пропилена (см. раздел 28.8.5).

Винилацетат используется в качестве мономера для получения полимеров и сополимеров, имеющих очень широкий спектр практическо­го применения от граммпластинок (в виде сополимера с хлорвинилом) до различного рода клеев, лаков и эмульсионных красок, основанных на сополимерах винилацетата с эфирами акриловой кислоты. Современ­ный способ получения винилацетата представляет собой по сути дела особую разновидность Вакер-процесса, где вместо воды используется уксусная кислота.

Получение уксусного альдегида двумя способами

Смесь этилена и уксусной кислоты окисляется в газовой фазе в присутствии палладиевого катализатора при 200оС и давлении 10 атм, выход винилацетата достигает 90-95%. Производство винилацетата в США составило 1,2 млн тонн, что соответствует потреблению 2,5-3% производимого этилена.

studfiles.net

 

l77 870

Сова Соеетскит

Социалистических

Республик

Зависимое от авт. свидетельства ¹

Кл. 12о, 7са

Заявлено 13.Ч.1963 (№ 836257/23-4) с присоединением заявки №

Приоритет

МПК С 07с

УДК 547.281.2:661.871.5 (088.8) Комитет по делай иаобретеиий и открытий ври Совете Мииистрое

СССР

Опубликовано 08.1.1966. Б!оллетеиь ¹ 2

Дата опу бликования описания 22.П.1966

Авторы изобретения

Р. И. Агладзе и В. Л. Гегечкори

Заявитель

СПОСОБ ПОЛУЧЕНИЯ УКСУСНОГО АЛЬДЕГИДА

Известен способ получения уксусного альдегида путем >кидкофазной гидратации ацетилена в присутствии катализатора — солей ртути. Однако ртутный катализатор токсичеи, дефицитен, быстро дезактивируется, регенерация его сло>киа.

По предлагаемому способу, с целью упрощения процесса, в качестве катализатора применяют соли марганца, причем получение и регенерацию контактного раствора катализатора осуществляют электролитическим путем.

Контактный раствор катализатора можно получать также неэлектролитическим путем, заключающимся в растворении солей в соответствующих кислотах.

Состав контактного раствора катализатора для гидратации ацетилена следующий (в г/л):

Мпе($04) а 7, Мп(304). 4, MnSO4 1. Все эти соли растворяют в 50 — 60%-ной серной кислоте. Процесс гидратации ацетилена проводят в гидраторах барботериого типа при темпера5 туре 50 — 70 С и скорости газового потока

100 †1 л.т/лии. Выход уксусного альдегида

70 — 80 !/о.

10 Предмет изобретения

Способ получеги!я уксусного альдегида путем >кидкофазной гидратации ацетилена в присутствии катализатора, отличающийся

15 тем, что, с целью упрощения процесса, В качествс катализатора при: 1еия!От соли марганца.

Способ получения уксусного альдегида 

www.findpatent.ru

Уксусный альдегид (другие наименования – этаналь, ацетальдегид) имеет химическую формулу CH3COH. Внешний вид – прозрачная бесцветная жидкость, с крутым «обжигающим» запахом. Кипит при комнатной температуре. Легко растворяется в воде, и некоторых органических веществах. Обширно распространен в природе, встречается в большинстве растений, продуктов питания. Каким образом дозволено синтезировать это вещество?

Инструкция

1. Самый общеизвестный и результативный метод приобретения уксусного альдегида – окисление этилена. Реакция протекает таким образом: 2С2Н4 + О2 = 2СН3СОН

2. Синтез идет с применением катализатора – хлористого палладия. Причем, если проводить прямое окисление этилена кислородом, он протекает медлительно. Следственно, в реакционную массу добавляют соли меди двухвалентной, дабы она окисляла палладий, переходя сама в одновалентную медь, здесь же окисляемую кислородом. То есть, медь в этом синтезе служит как бы переносчиком кислорода. Эта реакция получила наименование «Вакер-процесс».

3. Уксусный альдегид также дозволено получить, проведя гидратацию ацетилена. Такой синтез, проходящий в присутствии солей ртути, получил наименование «реакция Кучерова». Он протекает дальнейшим образом: C2H2 + H2O = CH3COН

4. В лаборатории уксусный альдегид дозволено получить также, применяя в качестве сырья этиловый спирт, это метод, тот, что многие посчитают чуть ли не святотатством. Реакция протекает таким образом: С2Н5ОН = СН3СОН + Н2То есть, для приобретения этаналя, осуществляется дегидрирование этанола при высокой температуре, с применением катализаторов (медных либо серебряных).

5. Дозволено не «отщеплять» водород у этанола, а подвергнуть его окислению, также при высоких температурах и тех же катализаторах. Тогда реакция пойдет дальнейшим образом: 2С2Н5ОН + О2 = 2СН3СОН + 2Н2О

Водород является первым элементом таблицы Менделеева. Он представляет собою бесцветный газ. Обширно используется в химической и пищевой промышленности (гидрирование разных соединений), а также как компонент ракетного топлива. Водород крайне перспективен в качестве топлива для автомобилей, от того что при сгорании не засоряет окружающую среду.

Вам понадобится

  • — реакционная емкость (отменнее каждого – плоскодонная коническая колба);
  • — резиновая пробка, плотно закрывающая горловину колбы, с пропущенной через нее изогнутой стеклянной трубкой;
  • — емкость для сбора водорода (пробирка);
  • — емкость, заполненная водой («гидрозатвор»);
  • — ломтик кальция.

Инструкция

1. В промышленности водород получают основным образом путем реакции водяного пара с раскаленным углеродом (коксом), электролизом раствора хлористого натрия и т.д. В лабораториях его дозволено получить многими методами.

2. Пробирка, куда собирается водород, должна быть безусловно целой, даже малейшая трещинка недопустима! Перед тем как проводить навык с тлеющей лучиной, отличнее для предосторожности обмотайте пробирку плотной тканью.

3. В плоскодонную колбу налейте немножко воды, киньте в нее маленький ломтик кальция и тут же же плотно закройте пробкой. Изогнутое «колено» трубки, проходящей через пробку, должно находиться в емкости с водой «гидрозатворе», а кончик трубки — немножко выступать над поверхностью воды. Стремительно накройте данный кончик опрокинутой верх дном пробиркой, куда будет собираться водород (край пробирки должен быть в воде).

4. Когда реакция в колбе закончится, нужно стремительно заткнуть пробирку плотно прилегающей пробкой, по-бывшему держа ее верх дном, дабы больше легкий водород не улетучился. Отличнее сделайте это, продолжая удерживать ее край под водой.

5. Дабы продемонстрировать, что получен именно водород, вытянете пробку и поднесите к краю пробирки тлеющую лучинку. Раздастся классический хлопок.

Видео по теме

Обратите внимание!
Кальций хоть и менее энергичен, чем щелочные металлы, но при работе с ним тоже необходима осторожность. Хранят его в стеклянной емкости под слоем керосина, либо жидкого парафина, извлекают непринужденно перед началом навыка (отменнее каждого – длинным пинцетом). В ходе реакции образуется щелочь, являющаяся резким веществом, берегитесь ожогов! По вероятности используйте резиновые перчатки. При смешивании с воздухом либо кислородом, водород взрывоопасен.

Полезный совет
Следует заблаговременно до начала навыка подобрать и трубку с требуемой степенью изгиба, и емкость — «гидрозатвор» подходящих размеров. В ходе реакции исправлять оплошности будет легко некогда.

Полезный совет
Уксусный альдегид находит использование как сырье для приобретения уксусной кислоты, некоторых альдегидных полимеров и других веществ. Токсичен, имеются данные и о его допустимом влиянии на предрасположенность к раковым заболеваниям. Образуется в организме человека позже принятия алкоголя как продукт метаболизма этилового спирта, этим во многом и объясняется неприятные проявления похмелья.

jprosto.ru


Leave a Comment

Ваш e-mail не будет опубликован. Обязательные поля помечены *